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Abstract Pseudomonotone∗ maps are a generalization of paramonotone maps which is
very closely related to the cutting plane property in variational inequality problems (VIP). In
this paper, we first generalize the so-called minimum principle sufficiency and the maximum
principle sufficiency for VIP with multivalued maps. Then we show that pseudomonotonicity∗
of the map implies the “maximum principle sufficiency” and, in fact, is equivalent to it
in a sense. We then present two applications of pseudomonotone∗ maps. First we show
that pseudomonotone∗ maps can be used instead of the much more restricted class of
pseudomonotone+ maps in a cutting plane method. Finally, an application to a proximal
point method is given.
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1 Introduction

In recent years, several algorithms for the solution of variational inequalities were based
on paramonotone maps. The introduction of these maps goes back to 1976 [2], but a more
systematic study was initiated in [3] and continued in [14] and other papers thereafter. Para-
monotone maps form a class which is more restricted than monotone but larger than strictly
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monotone maps, and contains the subdifferentials of proper, convex, lsc functions. They
posses a property, the so-called cutting plane property, that makes them suitable in several
interior point algorithms.

Paramonotone maps were subsequently generalized to pseudomonotone∗ maps. This was
done in [4] for the single valued case and in [13] for the multivalued case. Pseudomonotone∗
maps form a class that lies between pseudomonotone and strictly pseudomonotone maps and
contains the subdifferentials of locally Lipschitz pseudoconvex functions. These maps also
have the cutting plane property, and in a sense are exactly the set of maps that always have
this property [13].

The aim of the present paper is to show that pseudomonotone∗ maps may indeed suc-
cessfully replace other, more restricted, classes of maps in several applications, and exhibit
their relation to the so-called “maximum priciple sufficiency” [17]. In Sect. 2 we recall the
maximum principle sufficiency and minimum principle sufficiency as they were defined for
variational inequality problems with single valued maps, and generalize them to the case of
multivalued maps. Further, we show that pseudomonotone∗ maps are exactly the class of
maps for which the maximum principle sufficiency always holds.

In Sect. 3 we present an application of pseudomonotone∗ maps to a cutting plane algorithm
proposed in [9]. We obtain a result similar to the one in [9] but in a more general setting (with
a map which is multivalued pseudomonotone∗ rather than single valued pseudomonotone+),
and with a weaker continuity assumption. In Sect. 4 we show how pseudomonotone∗ maps
can be used instead of paramonotone maps, in a proximal point algorithm.

We first fix the notation and recall some preliminary results. In the following, X will be
a Banach space and X∗ its topological dual. For a set K ⊆ X we denote by NK (x) the
normal cone to K at x . For A ⊆ X∗, we set R++ A = {t x∗ : t > 0, x∗ ∈ A}. Given a
multivalued map T : X → 2X∗

, D(T ) will denote its domain and ZT its set of zeros, i.e.,
the set ZT = {x ∈ X : 0 ∈ T (x)}. An element x ∈ K is called a solution of the Stampacchia
variational inequality problem VIP if

∃x∗ ∈ T (x) : 〈
x∗, y − x

〉 ≥ 0 for all y ∈ K . (VIP)

It is called a solution of the Minty variational inequality problem MVIP if

∀y ∈ K ,∀y∗ ∈ T (y),
〈
y∗, y − x

〉 ≥ 0. (MVIP)

We denote by S(T, K ) (respectively, SM (T, K )) the set of solutions of the VIP (respec-
tively, MVIP).

There are two quite different notions of pseudomonotonicity we will employ. One is
mainly related to continuity and is due to Brezis and Browder: we will follow [18] and call
it t-pseudomonotonicity (t-stands for topological).

Definition 1 A multivalued map T : X → 2X∗
with closed convex domain D(T ) is called

t-pseudomonotone on D(T ) if for every {xk} ⊆ D(T ) converging weakly to some x ∈ D(T )

and every choice x∗
k ∈ T (xk) such that

lim sup
k→+∞

〈
x∗

k , xk − x
〉 ≤ 0

the following holds: For every y ∈ D(T ) there exists x∗ ∈ T (x) (depending in general on
y) such that

〈
x∗, x − y

〉 ≤ lim inf
k→+∞

〈
x∗

k , xk − y
〉
.
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The other notion was introduced by Karamardian, and we will call it simply
pseudomonotonicity, as it is indeed a generalization of monotonicity.

Definition 2 A multivalued map T : X → 2X∗
is called pseudomonotone if for every

x, y ∈ X and every x∗ ∈ T (x), y∗ ∈ T (y), the following implication holds:
〈
x∗, y − x

〉 ≥ 0 ⇒ 〈
y∗, y − x

〉 ≥ 0.

We recall some more necessary definitions and facts. Details can be found in [11,12].
Two pseudomonotone maps T1, T2 are called equivalent (T1 ∼ T2) if they have the same
domain, the same set of zeros, and for every x ∈ X\ZT1 , R++T1(x) = R++T2(x). This is
an equivalence relation. The equivalence class of a pseudomonotone map T has a maximum
element T̂ with respect to graph inclusion, given by

T̂ (x) =
{

NLT,x (x), if x ∈ ZT

R++T (x), if x /∈ ZT .

Here, LT,x is the set

LT,x = {
y ∈ D(T ) : ∃y∗ ∈ T (y) : 〈

y∗, y − x
〉 = 0

}

and NLT,x (x) is the normal cone to LT,x at x :

NLT,x (x) = {
x∗ ∈ X∗ : 〈

x∗, y − x
〉 ≤ 0,∀y ∈ LT,x

}
.

Definition 3 A multivalued map T : X → 2X∗
is called:

(i) paramonotone [2,3], if it is monotone and for every x, y ∈ X and x∗ ∈ T (x),
y∗ ∈ T (y), 〈x∗ − y∗, x − y〉 = 0 implies that x∗ ∈ T (y) and y∗ ∈ T (x)

(ii) pseudomonotone∗ [13], if it is pseudomonotone and for every x, y ∈ X and x∗ ∈ T (x),
y∗ ∈ T (y), 〈x∗, y − x〉 = 〈y∗, y − x〉 = 0 implies that x∗ ∈ T̂ (y) and y∗ ∈ T̂ (x).

The class of pseudomonotone∗ maps is significantly larger than the class of paramonotone
maps. As an example, the Clarke subdifferential of a locally Lipschitz pseudoconvex function
is pseudomonotone∗; also, if T is pseudomonotone∗ and S ∼ T , then S is pseudomonotone∗
[13].

Paramonotone maps have the following “cutting plane property” (CPP). This property
runs as follows:

x ∈ S(T, K )

z ∈ K
〈z∗, x − z〉 ≥ 0 for some z∗ ∈ T (z)

⎫
⎬

⎭
⇒ z ∈ S(T, K ). (CPP)

Also pseudomonotone∗ maps have the CPP. What is more interesting, these maps are in a
sense characterized by the CPP: if a pseudomonotone map T has convex, w∗-compact values
and has the CPP on every convex, compact subset of K , then T is pseudomonotone∗ on int K
(cf. Theorem 4.1 in [13]).

In Sect. 3 we will use the following very weak notion of continuity.

Definition 4 A multivalued map T is called upper sign-continuous at x ∈ D(T ) if for every
v ∈ X the following implication holds:

∀t ∈ (0, 1), inf
x∗∈T (x+tv)

〈
x∗, v

〉 ≥ 0 ⇒ sup
x∗∈T (x)

〈
x∗, v

〉 ≥ 0.

For instance, any upper hemicontinuous map (i.e., a map whose restriction on any line
segment in D(T ) is upper semicontinuous with respect to the weak∗-topology on X∗) is
upper sign-continuous. Any positive function in R is upper sign-continuous.
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2 Maximum principle sufficiency and CPP

Let f : K → R be a Gâteaux differentiable convex function and K ∗ = argminx∈K f (x).
The so-called minimum principle for convex programs asserts that for every x ∈ K ∗, the
elements of K ∗ minimize 〈∇ f (x), ·〉 over K , i.e.,

z ∈ K ∗ ⇒ ∀y ∈ K , 〈∇ f (x), y − z〉 ≥ 0. (1)

If the reverse implication is also true for every x ∈ K ∗, then one says that the minimum
principle sufficiency (MinPS) holds (see for instance [7]). This has been generalized subse-
quently to variational inequalities for a single-valued monotone [8] or pseudomonotone [15]
map T with the help of the primal gap function g : K → R ∪ {+∞} defined by

g(x) := sup
y∈K

〈T (x), x − y〉 . (2)

It is known that g(x) ≥ 0 for all x ∈ K , and g(x) = 0 if and only if x ∈ S(T, K ). For
every x ∈ X set

�(x) = argsup
y∈K

〈T (x), x − y〉 = arginf
y∈K

〈T (x), y〉
= {z ∈ K : 〈T (x), y − z〉 ≥ 0,∀y ∈ K } .

Then pseudomonotonicity of T implies that for each x ∈ S(T, K ) one has S(T, K ) ⊆
�(x) (minimum principle). If for each x ∈ S(T, K ) one has S(T, K ) = �(x) then one says
that the minimum principle sufficiency holds.

Minimum principle sufficiency is a very strong assumption, which is true in the special
cases of quadratic programs and linear monotone complementarity problems with a nonde-
generate solution [7]. It was studied in connection with the concept of weak sharp solutions
and with the so-called pseudomonotone+ maps, which are a rather restricted class of maps
[15,17].

In [17] another principle was introduced. Define the dual gap function

G(x) := sup
y∈K

〈T (y), x − y〉

and

�(x) = argsup
y∈K

〈T (y), x − y〉
= {z ∈ K : 〈T (z), x − z〉 ≥ 〈T (y), x − y〉 ,∀y ∈ K }.

One can easily show for a pseudomonotone map T that for each x ∈ S(T, K ), S(T, K ) ⊆
�(x) holds. If for each x ∈ S(T, K ) one has S(T, K ) = �(x), then one says that the
maximum principle sufficiency (MaxPS) holds.

On what follows, we will generalize these principles to the multivalued case and show the
relation between them and the connection to pseudomonotone∗ maps.

Consider a multivalued map T : K → 2X∗\{0} with convex, weak∗-compact values.
Then one can define the primal gap function g : K → R by any of the following expressions

g(x) = min
x∗∈T (x)

sup
y∈K

〈
x∗, x − y

〉 = sup
y∈K

min
x∗∈T (x)

〈
x∗, x − y

〉
(3)

where the two expressions on the right are equal by the Sion minimax theorem.
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Likewise, one defines the dual gap function G : K → R by

G(x) = sup
y∈K

max
y∗∈T (y)

〈
y∗, x − y

〉
.

The following properties are obvious: g(x) ≥ 0 for all x ∈ K , and g(x) = 0 if and only if
x ∈ S(T, K ). Likewise, G(x) ≥ 0 for all x ∈ K , and G(x) = 0 if and only if x ∈ SM (T, K ).

We can generalize the so-called minimum principle sufficiency (MinPS) and the maximum
principle sufficiency (MaxPS) to the multivalued case as follows. Define

�(x) = argsup
y∈K

min
x∗∈T (x)

〈
x∗, x − y

〉

=
{

z ∈ K : min
x∗∈T (x)

〈
x∗, x − z

〉 ≥ min
x∗∈T (x)

〈
x∗, x − y

〉
, ∀y ∈ K

}

and

�(x) = argsup
y∈K

max
y∗∈T (y)

〈
y∗, x − y

〉

=
{

z ∈ K : max
z∗∈T (z)

〈
z∗, x − z

〉 ≥ max
y∗∈T (y)

〈
y∗, x − y

〉
,∀y ∈ K

}
.

Proposition 5

(i) For every x ∈ S(T, K ), SM (T, K ) ⊆ �(x) holds.
(ii) For every x ∈ SM (T, K ), S(T, K ) ⊆ �(x) holds.

Thus if, in particular, T is pseudomonotone, then x ∈ S(T, K ) implies S(T, K ) ⊆ �(x)

and S(T, K ) ⊆ �(x).

Proof Let x ∈ S(T, K ). Then g(x) = 0 hence

min
x∗∈T (x)

〈
x∗, x − y

〉 ≤ 0, ∀y ∈ K . (4)

If z ∈ SM (T, K ), then 〈y∗, y − z〉 ≥ 0 for every (y, y∗) ∈ gr T . This implies that
minx∗∈T (x) 〈x∗, x − z〉 ≥ 0. Combining with (4) we obtain

min
x∗∈T (x)

〈
x∗, x − z

〉 = 0 ≥ min
x∗∈T (x)

〈
x∗, x − y

〉
, ∀y ∈ K ,

i.e, z ∈ �(x). Thus SM (T, K ) ⊆ �(x).
Now let x ∈ SM (T, K ). Then G(x) = 0 hence

max
y∗∈T (y)

〈
y∗, x − y

〉 ≤ 0 ∀y ∈ K .

If z ∈ S(T, K ) then for some z∗
0 ∈ T (z),

〈
z∗

0, y − z
〉 ≥ 0 holds for all y ∈ K ; It follows

that

max
z∗∈T (z)

〈
z∗, x − z

〉 ≥ 〈
z∗

0, x − z
〉 ≥ 0 ≥ max

y∗∈T (y)

〈
y∗, x − y

〉 ∀y ∈ K ,

i.e., z ∈ �(x). Thus S(T, K ) ⊆ �(x).

The last part of the proposition follows since for a pseudomonotone map T , S(T, K ) ⊆
SM (T, K ). ��
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Generalizing [7] to the multivalued VIP, we call the property in Proposition 5(i) “minimum
principle”. Further, generalizing [7,17] we say that VIP has the minimum principle sufficiency
(MinPS) if �(x) = S(T, K ) for all x ∈ S(T, K ). Finally, generalizing [17], we will say that
VIP has the maximum principle sufficiency (MaxPS) if �(x) = S(T, K ) for all x ∈ S(T, K ).
The following proposition relates MinPS to MaxPS.

Proposition 6 Let T be pseudomonotone. Then MinPS implies MaxPS.

Proof Let x ∈ S(T, K ). Then x ∈ SM (T, K ), hence G(x) = 0. For each z ∈ �(x), by
definition of argsup we deduce that maxz∗∈T (z) 〈z∗, x − z〉 = 0 thus there exists z∗

0 ∈ T (z)
such that

〈
z∗

0, x − z
〉 = 0. Using pseudomonotonicity we deduce that 〈x∗, x − z〉 ≥ 0 for all

x∗ ∈ T (x). Hence minx∗∈T (x) 〈x∗, x − z〉 ≥ 0. Using g(x) = 0 and the definition of �(x)

we infer that z ∈ �(x). By MinPS, �(x) = S(T, K ). Hence z ∈ S(T, K ), which shows that
�(x) ⊆ S(T, K ). Since the reverse inclusion always holds, MaxPS follows. ��

When VIP stems from a convex program, i.e., T = ∇ f where f is convex and Gâteaux
differentiable (or more generally T = ∂ f where f is convex and lsc) it is not hard to show
that, in contrast to MinPS, MaxPS always holds. This is true in much more general situations.
First we compare MaxPS with CPP:

Proposition 7 Let T be pseudomonotone. VIP has the MaxPS if and only if CPP holds.

Proof Assume that CPP holds. Fix x ∈ S(T, K ). As in the proof of the previous proposition
we get that for every z ∈ �(x) there exists z∗

0 ∈ T (z) such that
〈
z∗

0, x − z
〉 = 0. By CPP we

infer that z ∈ S(T, K ), thus �(x) ⊆ S(T, K ).
Conversely, assume that MaxPS holds. Take x ∈ S(T, K ) and z∈K such that 〈z∗, x−z〉≥0

for some z∗ ∈ T (z). Then x ∈ SM (T, K ) implies
〈
z∗, x − z

〉 ≥ 0 ≥ 〈
y∗, x − y

〉
, ∀y ∈ K , ∀y∗ ∈ T (y).

Thus z ∈ �(x). By the MaxPS, z ∈ S(T, K ) thus CPP holds. ��
An obvious consequence of the above proposition and the properties of pseudomonotone∗

maps that we mentioned in the introduction is:

Corollary 8 If T is pseudomonotone∗ then MaxPS holds. Conversely, if T is pseudomono-
tone with convex, w∗-compact values and MaxPS holds on every convex, compact subset of
K , then T is pseudomonotone∗ on int K .

In particular, if we have a program defined by a convex (respectively, pseudoconvex)
differentiable function f , then ∇ f is a paramonotone (respectively, pseudomonotone∗) map.
Since paramonotone maps are pseudomonotone∗, in both cases MaxPS holds. By the same
argument, in a program defined by a locally Lipschitz pseudoconvex function, MaxPS holds.

3 A cutting plane algorithm

Because of the close relation between pseudomonotone∗ maps and the cutting plane property,
these maps are naturally suited for cutting plane algorithms for solving VIP. We illustrate
this point by an application to a cutting plane algorithm for solving a multivalued VIP, where
the cutting planes pass through approximate analytic centers. This algorithm was proposed
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in [9] for a VIP with a single valued, Lipschitz, pseudomonotone+ map. In our case we will
generalize to a multivalued, upper sign-continuous, pseudomonotone∗ map.

Let K be a bounded full-dimensional polyhedron in R
n :

K = {x ∈ R
n : Ax ≤ b}

where A is a m × n matrix and b ∈ R
m . Let T : R

n → 2R
n

be a multivalued map. We first
recall the following existence result.

Theorem 9 Assume that T has nonempty, convex, compact values on K . Assume further
that T is either upper semicontinuous, or it is upper sign-continuous and pseudomonotone.
Then S(T, K ) �= ∅.

In the upper semicontinuous case, this result is well-known. In the pseudomonotone case,
one may consult [18].

The algorithm for finding an element of S(T, K ) relies on the following idea. Assume
that T is pseudomonotone∗. If an element x0 is not a solution of VIP, then by the CPP we
know that all solutions are in the intersection

K1 := K ∩ {
x ∈ R

n : 〈
x∗

0 , x − x0
〉
< 0

}

where x∗
0 is any element of T (x∗

0 ). Thus, if x0 is “somewhere in the middle” of K , we will
be sure that S(T, K ) is bound to be in K1 which is a smaller set. By continuing in this way,
one can hope to produce a decreasing sequence of sets and, at the limit, arrive to a solution of
VIP. The role of points “somewhere in the middle” will be played by approximate analytic
centers. For the convenience of the reader, we briefly recall the definition from [9]. We write
K as

K = {x ∈ R
n : Ax + s = b, s ∈ R

m+}.
A point x̄ ∈ K is the analytic center if the vector s̄ = b − Ax̄ ∈ R

m+ maximizes the
strictly concave potential ϕ(s) = ∑m

j=1 ln(s j ). The analytic center is the unique solution of
the Karush-Kuhn-Tucker system

AT ȳ = 0

Ax̄ + s̄ = b

Ȳ s̄ = e

where ȳ ∈ R
m is the corresponding dual vector, Ȳ is the m × m diagonal matrix whose

diagonal elements are the coordinates of ȳ, and e is the vector (1, 1, . . . 1) ∈ R
m . Given

η ∈ (0, 1), an approximate analytic center is a vector x ∈ C such that for some s ∈ R
m+ and

y ∈ R
m one has

AT y = 0

Ax + s = b

‖Y s − e‖ ≤ η

where Y is the diagonal matrix whose diagonal elements are the coordinates of y.
We will use the same η ∈ (0, 1) at all iterations of the algorithm below. The algorithm

runs as follows.

1. Initialization.
k = 0, Ak = A, bk = b.
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2. Computation of an approximate analytic center.
Set Ck = {x ∈ R

n : Ak x ≤ bk}. Find an approximate analytic center xk of Ck .
3. Stopping rule.
Compute g(xk). If g(xk) = 0, then stop. Otherwise go to Step 4.
4. Generation of a cutting plane.
Choose x∗

k ∈ T (xk) and set

Ak+1 =
(

Ak

x∗
k

)
, bk+1 =

(
bk〈

x∗
k , xk

〉
)

.

Set k := k + 1 and go to Step 2.

We will use the following property P of the algorithm, taken from [9]:

Given any open ball B(x, ε) lying in K , there exists
an iteration index k such that B(x, ε) � Ck .

(P)

Note that property (P) holds for any method of generating a cutting plane at Step 4; in
particular it does not depend on the properties of T .

We first examine the case where T is upper semicontinuous.

Theorem 10 Let the set K = {x ∈ R
n : Ax ≤ b} be bounded and such that int K �= ∅.

Assume that T : K → 2R
n

is a pseudomonotone∗, upper semicontinuous map with nonempty,
convex, compact values. Then the algorithm either stops with a solution of VIP or defines an
infinite sequence which has a limit point that is a solution of VIP.

Proof Assume that the algorithm does not stop with a solution of VIP. Then it defines a
bounded sequence {xk} such that xk /∈ S(T, K ) for all k ∈ N.

By Theorem 9, S(T, K ) is nonempty. Choose z ∈ S(T, K ) and let {zi }, i ∈ N be any
sequence in int K converging to z. For each i ∈ N choose εi > 0 such that B(zi , εi ) ⊆
int K and limi→+∞ εi = 0. By Property (P), for each i ∈ N we can choose inductively
k(i) ∈ N such that B(zi , εi ) � Ck for all k ≥ k(i) and k(i) > k(i − 1), i ≥ 2. Choose
yi ∈ B(zi , εi )\Ck(i). Since yi /∈ Ck(i), one has

∀i ∈ N,
〈
x∗

k(i), yi

〉
>

〈
x∗

k(i), xk(i)

〉
. (5)

Furthermore, yi ∈ B(zi , εi ) together with limi→+∞ zi = z and limi→+∞ εi = 0 imply
that limi→+∞ yi = z. By compactness of K , the sequence {xk(i)} has a subsequence {xk(i ′)},
i ′ ∈ N

′ with N
′ ⊆ N which converges to some element x0 ∈ K . Since T is upper semi-

continuous with compact values, the sequence {x∗
k(i ′)} has a subsequence {x∗

k(i ′′)}, i ′′ ∈ N
′′

with N
′′ ⊆ N

′, converging to some x∗
0 ∈ T (x0). By taking the limit in (5), we deduce that〈

x∗
0 , z − x0

〉 ≥ 0. Using property CPP we deduce that x0 ∈ S(T, K ).
This element x0 cannot be equal to any element of the sequence {xk} since xk /∈ S(T, K )

for all k ∈ N. Hence it is a limit point of {xk}. ��
The case of an upper sign-continuous map can be reduced to the upper semicontinuous

case, by using the properties of the equivalence relation.

Corollary 11 Let the set K = {x ∈ R
n : Ax ≤ b} be bounded and such that int K �= ∅.

Assume that T : R
n → 2R

n
is a pseudomonotone∗, upper sign-continuous map such that

K ⊆ int D(T ), with nonempty, convex, compact values on int D(T ). Then the algorithm
either stops with a solution of VIP or defines an infinite sequence which has a limit point that
is a solution of VIP.

123



J Glob Optim (2009) 43:565–575 573

Proof We assume again that the algorithm does not stop, hence it generates and infinite
sequence {xk} whose elements are not solutions of VIP. We will show that we can assume,
without loss of generality, that T is upper semicontinous on K . By restricting the domain of T
if necessary, we can assume that D(T ) = int D(T ). According to Theorem 3.7 of [11], there
exists an upper semicontinuous pseudomonotone map T ′ with nonempty, compact convex
values which is equivalent to T . By Proposition 3.11 of [13], T ′ is pseudomonotone∗. We
show by induction that T and T ′ produce the same sets Ck and the same sequence {xk}.
Assume that this statement is true for some k ∈ N, i.e., at iteration k both maps give rise to
the same set Ck and the same element xk .

Since xk /∈ S(T, K ), it is clear that xk /∈ ZT = ZT ′ . By the definition of the equivalence
relation, for any choice of x∗

k ∈ T (xk), there exists λk > 0 such that λk x∗
k ∈ T ′(xk) and vice

versa. It follows that the set Ck+1 is the same for the two maps T and T ′. Also, the element
xk+1 depends only on Ck+1 and not on the map T or T ′.

The corollary follows from Theorem 10. ��

4 A proximal point algorithm for solving VIP

In the following, X will be a reflexive Banach space. Given a multivalued map T : X → 2X∗

and a nonempty closed convex set K ⊆ X , Burachik and Scheimberg [1] (and many others)
used Bregman functions in a version of the proximal point method, in order to solve the
Stampacchia variational inequality.

Let f : X → R ∪ {+∞} be a strictly convex, proper, lsc function with closed domain
D = dom( f ) which is Gâteaux differentiable on the nonempty interior of D. For this function,
the Bregman distance D f (y, x) is defined on D × int D by

D f (y, x) = f (y) − f (x) − 〈∇ f (x), y − x〉.
The following “three point property” is obvious:

D f (x, z) + D f (z, y) = D f (x, y) + 〈∇ f (z) − ∇ f (y), z − x〉. (6)

Following [1] we will say that f is a Bregman function if the following assumptions hold:

B1. The right level sets of D f (x, ·):
R f

α (x) = {
y ∈ int D : D f (x, y) ≤ α

}

are bounded, for all α ∈ R and x ∈ D.
B2. If {xk} ⊆ int D and {yk} ⊆ int D converge weakly to x and limk→+∞ D f (xk, yk) = 0,

then

lim
k→+∞

(
D f (x, xk) − D f (x, yk)

) = 0.

B3. If {xk} ⊆ D is bounded, {yk} ⊆ int D is such that w-limk→+∞ yk = y and limk→+∞
D f (xk, yk) = 0, then w-limk→+∞ xk = y.

For example, in X = L p or l p with p > 1, f (x) = ‖x‖p
p is a Bregman function.

A Bregman function in R
n whose domain is the positive orthant R

n+ is the Shannon function
h(x) = ∑n

i=1 xi ln xi with the convention 0 ln 0 = 0.
Let a Bregman function f be given. Assume that K ⊆ D(T ) ∩ int D. Consider the

following proximal point algorithm.
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1. Initialization.
Choose x0 ∈ K .
2. Solution of a simpler VIP.
Given xk , define xk+1 by the inclusion

0 ∈ (µk T + NK + ∇ f ) xk+1 − ∇ f (xk) (7)

for some µk > 0.
3. Stoping rule.
If xk+1 = xk , then stop. Otherwise set k = k + 1 and go to Step 2.
Note that (7) can be stated equivalently as follows: xk+1 is a solution of the variational
inequality: for some x∗

k+1 ∈ T (xk+1),

〈
µk x∗

k+1 + ∇ f (xk+1) − ∇ f (xk) , y − xk+1
〉 ≥ 0, ∀y ∈ K . (8)

If the algorithm stops at xk , then it is obvious that xk is a solution of VIP. Otherwise, the
goal is to show that the infinite sequence provided by the algorithm (or a subsequence of it)
converges to a solution of VIP. For this, we will use the following theorem of [1].

Theorem 12 Assume that the sequence generated by the algorithm is well defined and infi-
nite. If X∗ �= ∅, then the following hold:

(i) The sequence {xk} is bounded,
(ii)

∑+∞
k=0 D f (xk+1, xk) < +∞,

(iii) For each x̄ ∈ S(T, K ), D f (x̄, xk) converges.

The following theorem generalizes Theorem 3.4.(A1) of [1].

Theorem 13 Assume that S(T, K ) is nonempty, that µk > µ for some µ > 0, and that
the algorithm produces a well-defined infinite sequence. If T is t-pseudomonotone and
pseudomonotone∗, then every weak limit point of {xk}k∈N belongs to S(T, K ).

Proof We follow mainly the arguments of [1]. By Theorem 12, the sequence {xk}k∈N is
bounded. Let

{
xk j

}
j∈N

be a subsequence of {xk}k∈N, weakly converging to some point x . By
Theorem 12(ii), limk j →+∞ D f (xk j +1, xk j ) = 0. By condition B3, w-lim xk j +1 = x .

Using B2 we deduce that

lim
j

(
D f

(
x, xk j +1

) − D f
(
x, xk j

)) = 0. (9)

By using successively (8), the three-point property (6) and (9), we get

lim inf
j

µk j

〈
x∗

k j +1, x − xk j +1

〉
≥ lim inf

j

〈∇ f (xk j ) − ∇ f (xk j +1), x − xk j +1
〉

= lim inf
j

(
D f

(
x, xk j +1

) − D f
(
x, xk j

) + D f
(
xk j +1, xk j

)) = 0.

Since µk j > µ, we arrive at lim inf j

〈
x∗

k j +1, x − xk j +1

〉
≥ 0. By t-pseudomonotonicity,

given x̄ ∈ S(T, K ) there exists x∗ ∈ T (x) such that

〈
x∗, x − x̄

〉 ≤ lim inf
j

〈
x∗

k j +1, xk j +1 − x̄
〉
. (10)
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Using successively: the fact that x̄ is a solution of MVIP, (8) and the three-point property,
we deduce

0 ≤ µk j

〈
x∗

k j +1, xk j +1 − x̄
〉
≤ 〈∇ f (xk j +1) − ∇ f

(
xk j

)
, x̄ − xk j +1

〉

= D f
(
x̄, xk j

) − D f
(
x̄, xk j +1

) − D f
(
xk j +1, xk j

)
.

By Theorem 12(iii) the sequence
{

D f (x̄, xk)
}

is converging. Hence the above relation

implies that lim j

〈
x∗

k j +1, xk j +1 − x̄
〉
= 0. Combining with (10), we arrive at 〈x∗, x − x̄〉 ≤ 0.

Finally, using that T is pseudomonotone∗, we infer from (CPP) that x ∈ S(T, K ). ��
If further ∇ f is weakly continuous, then it can be shown by standard arguments (see for

instance Theorem 3.5 in [1]) that the whole sequence {xk} weakly converges to a solution of
VIP.
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